yaml
type: "io.kestra.plugin.ai.tool.kestraflow"
Examples
yaml
id: agent_calling_flows_explicitly
namespace: company.ai
inputs:
- id: use_case
type: SELECT
description: Your Orchestration Use Case
defaults: Hello World
values:
- Business Automation
- Business Processes
- Data Engineering Pipeline
- Data Warehouse and Analytics
- Infrastructure Automation
- Microservices and APIs
- Hello World
tasks:
- id: agent
type: io.kestra.plugin.ai.agent.AIAgent
prompt: Execute a flow that best matches the {{ inputs.use_case }} use case selected by the user
provider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-2.5-flash
apiKey: "{{ kv('GEMINI_API_KEY') }}"
tools:
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: business-automation
description: Business Automation
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: business-processes
description: Business Processes
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: data-engineering-pipeline
description: Data Engineering Pipeline
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: dwh-and-analytics
description: Data Warehouse and Analytics
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: file-processing
description: File Processing
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: hello-world
description: Hello World
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: infrastructure-automation
description: Infrastructure Automation
- type: io.kestra.plugin.ai.tool.KestraFlow
namespace: tutorial
flowId: microservices-and-apis
description: Microservices and APIs
yaml
id: agent_calling_flows_implicitly
namespace: company.ai
inputs:
- id: use_case
type: SELECT
description: Your Orchestration Use Case
defaults: Hello World
values:
- Business Automation
- Business Processes
- Data Engineering Pipeline
- Data Warehouse and Analytics
- Infrastructure Automation
- Microservices and APIs
- Hello World
tasks:
- id: agent
type: io.kestra.plugin.ai.agent.AIAgent
prompt: |
Execute a flow that best matches the {{ inputs.use_case }} use case selected by the user. Use the following mapping of use cases to flow IDs:
- Business Automation: business-automation
- Business Processes: business-processes
- Data Engineering Pipeline: data-engineering-pipeline
- Data Warehouse and Analytics: dwh-and-analytics
- Infrastructure Automation: infrastructure-automation
- Microservices and APIs: microservices-and-apis
- Hello World: hello-world
Remember that all those flows are in the tutorial namespace.
provider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-2.5-flash
apiKey: "{{ kv('GEMINI_API_KEY') }}"
tools:
- type: io.kestra.plugin.ai.tool.KestraFlow
Properties
description string
flowId string
inheritLabels booleanstring
Default
false
inputs object
labels arrayobject
namespace string
revision integerstring
scheduleDate string
Format
date-time